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� Effects of friction interfaces on the vibration response of a clamped bar are investigated.

� The bar is assumed to undergo axial and torsional motions.

� Novel analytical solutions to the problem are derived with both displacement and velocity-dependent
friction models.

� The proposed analytical solutions are compared to the numerical solutions based on harmonic
balance methods.
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Abstract

The present study introduces a novel analytical solution to predict the nonlinear dynamic behaviour of
bars under frictional clamping in axial and torsional motions. It investigates the vibration characteristics
of straight bars with imperfect supports, which introduce dry friction at their contact interfaces. The
bars are tightly clamped between rigid fixtures, with the tightening load acting as a normal load that
induces friction, thus adding nonlinearity to the system. The model simplifies contact forces to point
loads and utilises both the Jenkins and velocity-dependent friction models for simulating contact friction.
These frictional forces are represented as solution-dependent external forces in the governing differential
equation for bar vibration, which also includes appropriate boundary conditions. The equation is solved
both analytically and through the numerical method of alternating frequency-time harmonic balance, to
explore the influence of contact parameters on the bar’s support system behaviour. Comparisons between
the numerical and analytical results demonstrate strong agreement, confirming the model’s accuracy and
validity.

Keywords: Bar vibrations, friction damping, nonlinear force, analytical solution, frequency response

1. Introduction

Damping is a crucial factor in governing the vibration response of a mechanical system. Friction joints
are present in almost any engineering system: assembly joints of the different components in aircraft wings,
friction in robotic arms’ joints, contact between blades and disks in an aircraft engine and friction between
the wires of bridge cables. Bridge cables are an example of friction between rods. Beam/bars are very
popular elements used in mechanical systems. Their simple shape makes them easy to manufacture and the
computation of internal stress can be done using analytical methods which accelerates the computations
and the design process significantly [1, 2, 3].

Beams and bars are the most common structural elements that can be continuosly modelled with
sufficient accuracy. Their simplicity makes their behaviour predictable. The beams/bars display pre-
dictable mechanical behaviour due to the concise mathematical formulations that make them easier to
develop. Also, the simplicity of the mathematical representation makes it easier to derive analytical so-
lutions [4, 5, 6]. This predictability makes these objects one of the most commonly used for experiments.
Beams/bars have been widely used in many experimental studies to test hypotheses, and properties of
new materials such as damping [7]. However, for most of the experimental setups, the beams are subjected
to contact either through clamping or jointed connections that change the stiffness, damping levels and
vibration behaviours of the experimental system due to the inherent friction interfaces [8].
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Friction in jointed structures is one of the areas that has been actively researched for many years
[9, 10]. Parthenon could be a good example. The existence of contact between Parthenon’s pinned joints
and the marble drums of the columns introduces frictional damping to the structure, which helps to
significantly reduce the stresses occurring during earthquakes [11, 12, 13]. Friction contributes to the
damping mechanism by serving as a dissipative force that opposes relative motion between two surfaces
in contact. This is particularly evident in jointed structures, where frictional forces work to dissipate
the kinetic energy of oscillations into thermal energy, thereby damping the system [14, 15, 16]. At
the microscopic level, irregularities on the surfaces in contact engage and disengage dynamically as the
structure undergoes vibration. This interaction leads to hysteresis losses, where the path of energy input
into the system does not coincide with the path of energy output, resulting in energy being irreversibly
lost as heat [17].

The frictional forces are not constant but rather change according to the speed, load, and even the
temperature of the joint, making the damping nonlinear in nature. Stick-slip behaviour is a common
manifestation of such nonlinear frictional damping. During the ‘stick’ phase, the static friction force
holds the two contacting surfaces together, storing potential energy in the system. As the system reaches
a critical stress state, slippage occurs, rapidly converting the stored potential energy into kinetic and
eventually thermal energy [17, 18, 19].

This frictional damping is significant not only in ancient structures like the Parthenon but also in
modern engineering applications such as clamped beams or bars, where understanding these damping
mechanisms is crucial for accurate characterisation and optimisation [14, 15, 20, 21].As one of the most
common damping sources in clamped beam/bar setups, friction must be considered during the character-
isation of damping and dynamical properties of new materials and structures [20, 21].

The contribution of friction to damping has been investigated analytically, numerically and experi-
mentally [22, 23, 24, 25]. There are various techniques to model contact friction itself [15, 26]. In the
literature, various techniques have been proposed to express friction forces that depend on slip velocity
and/or displacement. These techniques include the use of functions such as Benson, Coulomb, and smooth
Coulomb functions [27, 28, 29, 30, 31].

Alternatively, friction introduces nonlinear vibration behaviour such as amplitude dependent vibration
leading to more complicated solution procedure [32, 33]. Thus, the nonlinear systems are commonly
linearised to reduce the complexities. However, this reduces the accuracy of the solution to some extent
[29, 30, 34].

Imperfections like finite stiffness of supports, in other words, supports being compliant, and involving
frictional contact are therefore usually not considered in the modelling procedures [35, 36, 37]. However,
these imperfections can lead to significant changes in mechanical behaviour than the linearised/simplified
model [38]. It can be challenging to anticipate certain imperfections due to a limited understanding
of their underlying mechanisms. Stochastic modelling is one of the standard techniques to address the
uncertainties of these imperfections [39, 40, 41]. There are works exploring the effects of uncertainties
that focus on supports for beam/bar structures, which model complex boundary conditions [42, 43]. A
number of studies showed that friction as one of these imperfections plays a crucial role in influencing the
mechanical behaviour of a beam/bar-clamp-support system significantly [44, 36, 45, 37, 46]. It must be
predicted and modelled accurately to be able to design the systems that match the desired criteria. In most
of the experimental test setups, friction can influence the results significantly by changing the stiffness
and introducing damping. Prediction of the effects of friction is the main concern of this study. Contact
is unavaoidable especially in material damping measurement test rigs where friction can contribute to the
damping data. This phenomenon can be often seen in dynamic mechanical analysis (DMA) test setups
[47, 48].

To avoid/minimise the effects of friction in experimental setups such as clamped bars or beams, one
must predict it with reasonable accuracy. For this purpose, Shaw [20] explored the influence of dry
friction on a dynamic system using a velocity-dependent, piece-wise function for friction force. Ionescu
and Paumier [28] employed a slip displacement-dependent approach for elastic systems for static analyses.
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Ahn and Barber [21] studied the effect of response contacts on cyclic loading. Riddoch et al. [49] dealt with
discrete systems that are subjected to frictional damping and base excitation. Marino et al. explored
the motion of a single degree of freedom system influenced by friction arising from cyclic wall motion
through analytical means [50]. In a subsequent study, Marino and Cicirello also conducted experimental
investigations on a comparable system [51]. Later, they extend their work to develop an analytical
framework for delineating the boundaries of motion regimes in systems with multiple degrees of freedom
[52]. Apart from discrete systems, there are studies that examined continuous systems like bars/beams
subjected to friction. Asadi et al. [45] investigated a beam supported with a bolted structure where
friction is observed, both analytically and experimentally. Ferri and Bindermann [36] solve multiple cases
where there is friction introduced by different types of supports. Apart from the frictional supports,
there are also studies focusing on the dynamics of the beams touching a wall that causes friction [53, 46].
However, there are no analytical solutions to solve the axial and torsional dynamics of clamping bars
including friction interfaces due to the complex non-smooth nonlinearities.

This study builds on the previous DMA research [54, 55] where the testing can be significantly affected
by clamping bars with friction interfaces. This paper aims to develop an analytical formulation and
solution to represent the axial and torsional vibration behaviour of bars with frictional supports in an
efficient way. It is the first time such a nonlinear analytical solution is derived for the clamping bars with
friction interfaces. The proposed analytical solution will efficiently quantify the effects of the friction on
the clamping bars without the need for using the finite element (FE) modeling approach.

In this study, a novel approach is presented for understanding the vibration characteristics of straight
bars with imperfect supports, particularly focusing on dry friction at contact interfaces during axial
and torsional motions. Employing both Jenkins and velocity-dependent models, the frictional forces
are meticulously modelled and integrated into the governing differential equation of the bar’s vibrations
as solution-dependent external loads. Uniquely, the study utilises the Galerkin method for analytical
solution derivation, which allows the modelling of bars that have friction at clamps attached to them,
alongside the traditional numerical method of alternating frequency-time harmonic balance (AFTHB)
[56, 57, 58, 59, 60]. The findings display good consistency between the numerical and analytical models,
substantiating the efficacy of the proposed approach. Notably, this research pioneers an efficient predictive
framework for comprehensively characterising the dynamic behaviour of frictional bar-clamp systems
undergoing both axial and torsional motions.

This paper is organised to offer an in-depth analysis of frictional damping in jointed structures. It pays
special attention to the physical structure and the mathematical formulation, aiming for precise analytical
and computational modelling. The following section delineates the governing equations and assumptions.
Section 3, ‘Analytical Solution’ unveils a new framework for addressing the problem using analytical
methods that leads to derivation of exact solutions. This is validated in the ‘Numerical Modelling’
section, which employs computational techniques to affirm the analytical findings.

2. Formulation of the Problem

This section presents the mathematical framework that governs the vibration characteristics of straight
bars with imperfect supports influenced by dry friction. It begins with the ‘Description of Problem and
Assumptions’, where the general problem is outlined along with the assumptions made for simplification.
Subsequently, two distinct yet related mathematical models are introduced: one for ‘Axial Motion’ and
another for ‘Torsional Motion’. Each model is carefully formulated to account for the complexities intro-
duced by frictional forces at the contact interfaces. The detailed mathematical expressions serve as the
foundation for the analytical and numerical solutions discussed in subsequent sections.

2.1. Description of the Problem and Assumptions

The bar, with length L, cross-sectional area A material density ρ, is assumed to be made of linearly
elastic, with elastic modulus E, homogeneous and isotropic material without any inherent material damp-
ing. Moreover, it is assumed that the vibration amplitude is small, the slip at the contact interfaces is
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small as well. There is no micro slip, and no contact separation occurs throughout the entire motion.
The friction force is mainly defined by the dependency of relative slip and slip velocity. The coefficient of
friction is assumed to be constant and independent of the slip distance and the slip velocity. The normal
loads at the contact interfaces is also simplified as concentrated point loads in this model.

2.2. Model in Axial Motion

The first formulation concerns the axial vibrations of a bar as one of the simplest cases for bars. This
system is representative of the tension-compression fixture configuration of a DMA experiment setup.
The axial models consist of a clamped-clamped bar, including friction at the interfaces between the bar
surfaces and the clamps on both ends of the bar. A free body diagram is displayed in Figure 1 to show
the interaction forces, and some dimensions where µ is the coefficient of friction between the clamps and
the bar, FNA and FNB are the clamp tightening forces, evaluated as normal forces for friction modelling.
The subscripts A and B notate the points where the friction exists. The forces are defined as functions
of the friction coefficient, slip and slip velocity and the normal force, which is the tightening force for
this model. Based on this free body diagram, an analytical model is formulated. Apart from the general
assumptions enumerated earlier, this model is derived for distinct full-stick/full-slip (gross slip) motion
regimes and assumes that the clamps are rigid and introduce tightening forces and friction as point loads.

Figure 1: Axial forced vibration of a rod with frictional clamps.

The governing partial differential equation is the starting point for this analytical model. Relying on
the assumptions described before, the wave equation is used as given:

ρA (z)
∂2w

∂t2
=

∂

∂z

[
EA (z)

∂w

∂z

]
+ f (z, t) (1)

where L is the length of the bar which lies between the clamps, A is the cross-sectional area of the
bar, E is the modulus of elasticity, ρ is the density of the bar material, f(z, t) is the external distributed
load and w(z, t) is the axial displacement of the bar.
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The nonlinear part of this equation is the force term. As shown in the equation below, the frictional
forces are expressed within the external load term.

f (z, t) = δ (z)FFA + δ (z − L)FFB (2)

Here, δ (z) is the Dirac delta function. Also, FFA and FFB denote the friction forces applied by the
clamps A and B on the bar.

The friction depends on the relative slip or slip velocity dependency, which are denoted with Wslip

and Ẇslip respectively. The relative slip and slip velocities are expressed with respect to their locations,
namely, points A and B as follows:

WA slip = w(0, t)− wA(t), WB slip = w(L, t)− wB(t) (3)

ẆA slip = ẇ(0, t)− ẆA(t), ẆB slip = ẇ(L, t)− ẆB(t) (4)

where ẇ expresses the axial velocity of the bar, WA, WB, ẆA and ẆB express the displacement and
velocity of the clamps respectively.

The interactions due to contact appear in the form of distributed loads. Their resultants are the
effective frictional loads that are modelled as point loads/concentrated forces and/or moments. Acknowl-
edging that this model aims to reduce the contact interactions into concentrated loads, the distributed
loads need to be related to concentrated loads in terms of the contact parameters. The contact pressure p
is the reason for the resulting normal force at the contact, and τ is the frictional shear stress which leads
to the tangential frictional force when summed over the contact surface area A∗. The relations between
the contact forces, pressure and shear are expressed as:

FFA =

∫
A
τA dz , FFB =

∫
A
τB dz (5)

FNA =

∫
A
pA dz , FNB =

∫
A
pB dz (6)

The contact pressure and shear are related as a function of the friction coefficient, contact pressure
and relative slip or slip velocity, depending on the friction model used.

Finally, the governing equation of motion is transformed into the following form, which is a wave
equation with a nonlinear external force term.

ρA (z)
∂2w

∂t2
=

∂

∂z

[
EA (z)

∂w

∂z

]
+ δ (z) FFA + δ(z − L) FFB (7)

2.3. Model in Torsional Motion

In this scenario, the friction involved in the torsional vibration of a bar is formulated. For the
sake of simplicity, the model is formulated for a bar with a straight axis and a circular cross-section.
More specifically, this model is derived for cylindrical bars and not for arbitrarily prismatic ones. The
formulation of torsional vibrations of bars is based on the same assumptions and the same form of
governing equation below, as the axial case. Figure 2 presents a simple cylindrical bar, fitted into pipes,
which behave as clamps, with initial fitting pressures pA and pB along the lengths of the contacting regions
of the clamps lA and lB, which are not considered in the free bar length L.

ρIp (z)
∂2θ

∂t2
=

∂

∂z

[
GIt (z)

∂θ

∂z

]
+m (z, t) (8)
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Figure 2: Circular bar fitted in a pipe for clamping.

where, It is the torsional moment of inertia, Ip is the polar area moment of inertia, G is the shear
modulus of the material, m (z, t) is the external distributed torsional moment term, and θ is the twist
angle the bar. Considering that the bar has a circular cross-section, It becomes Ip.

Assuming the external loads as point loads, the load term becomes:

m (z, t) = δ (z)MFA + δ (z − L)MFB (9)

Here, MFA and MFB are the resultant moments applied on the bar by the fittings.
For further analysis, the loads acting on the bar are displayed in Figure 3. As mentioned earlier, p is

the fitting pressure, while τ is the shear caused by the friction at the contact interface.

Figure 3: Contact pressure and tangential distributed load at the contact interface for fitted circular bar

Using the relevant friction models, the relation between the shear and the contact pressure is the same
as in the axial case given in Equations (5) and (6).

To calculate the resulting moment, the contact friction shear is to be integrated over the whole surface
of contact. This integration is shown as:
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MFA =

∫ lA

0
τA π D dz , MFB =

∫ lB

0
τB π D dz (10)

Using the moment terms in the governing equation of motion, the expression becomes:

ρIp (z)
∂2θ

∂t2
=

∂

∂z

[
GIp (z)

∂θ

∂z

]
+ δ (z)

∫ lA

0
τA π D dz

+δ(z − L)

∫ lB

0
τB π D dz

(11)

3. Analytical Solution

In this section, a new analytical solution is proposed to solve the axial and torsional formulations with
friction forces presented in Section 2. The displacement (Jenkins) and the velocity-dependent friction
models are used to represent the behaviour of frictional contact forces on the clamping interfaces. It is
assumed that the first vibration mode of the bar is dominant to the response of the bar. Besides, it is
considered that the clamps are identical, and have the same tightening force. Also, the clamps move
with the same frequency and amplitude but in reverse directions, which cause the midpoint of the bar
to be stationary despite the nonlinearity introduced by the frictional contact. Hence, the system shows
a symmetry around the middle of the bar. This allows for simplification of the model by evaluating only
half of the bar. This simplified model is then nondimensionalised to generalise the solution procedure and
the results.

3.1. Axial Model

The clamped bar model with moving clamps in the axial direction introduced in the previous section
(Section 2.2) is studied in detail here. Referring to Figure 4a and Figure 4b, the frictional clamp (initially
at z = L) is assumed to move with a harmonic displacement a cos(Ωt) and to exert a contact force at
the tip of the clamped free bar. This is half of the model described in the formulation section. Taking
advantage of the symmetry assumption explained earlier, only half of the bar is representative of the
actual system.

(a) Axial problem with Jenkins element at the
tip of the clamped free bar.

(b) Axial problem with velocity-dependent ele-
ment at the tip of the clamped free bar.

Figure 4: Axial problem with clamped and fixed and bar.

3.1.1. Nondimensionalisation

If one assumes that a constant cross-sectional and material properties throughout the bar and the
imposed displacement to the clamp be equal to a cos(Ωt), the equation of motion for the axial model,
where w(z̄, t) is the axial displacement of the bar, is transformed into the form presented below, which is
a simplified version of Equation (7).

ρA
∂2w

∂t2
− EA

∂2w

∂z2
= δ(z − L) FNL(wrel,

∂wrel

∂t
) (12)
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As explained earlier, taking advantage of the symmetry, the boundary condition for the stationary
point in the middle of the bar can be expressed as:

w(0, t) = 0 (13)

The previous equation is nondimensionalised using the following variables: w̃, t̃, Ω̃, F̃ , k̃, c̃, κ̃, κ̃0, k̃T ,
and c̃T , obtained as:

m = ρAL ; κ = ω
√
ρ/E ; κ0 = ω0

√
ρ/E ; F0 = mω2

0a

k0 = mω2
0 ; c0 = mω0 ; w̃ = w/a ; z̃ = z/L ; t̃ = t ω0

Ω̃ = Ω/ω0 ; F̃ = F/F0 ; k̃ = k/k0 ; c̃ = c/c0 ; κ̃ = κL

κ̃0 = κ0L ; k̃T = kT /k0 ; c̃T = cT /c0

(14)

where a is the amplitude of the clamp motion, m is the mass, A is the cross-sectional area and L is
the length of the bar, ω0 is the eigenvalue of the bar mode one wants to study, 1/κ is the wavelength of
the excited frequency, 1/κ0 is the wavelength of the corresponding eigenfunction, F0 is the characteristic
force, k0 is the characteristic stiffness, c0 is the characteristic damping, kT is the stiffness coefficient of
the contact and cT is the damping coefficient of the contact.

Finally, multiplying Equation (12) by the factor 1/(ρAω2
0a) and making the scaled variables appear

reads as follows:

¨̃w − 1

κ̃20
w̃

′′
= δ(z̃ − 1) F̃NL (15)

where F̃NL indicates the nonlinear force which corresponds to frictional force, ¨̃w = ∂2w̃
∂t̃2

, w̃
′′
= ∂2w̃

∂z̃2
,

and the transformation of the Dirac delta from δ(z − L) to δ(z̃ − 1) generated a factor L.
To solve this problem, it is assumed that the harmonic displacement of the clamp has a frequency

around the first natural frequency of the bar. Hence, the ansatz is shown:

w̃(z̃, t̃) = α sin(κ̃z̃) cos(Ω̃t̃+ ψ) (16)

w̃ is the nondimensional displacement, α is the nondimensional amplitude of the bar motion over the
nondimensional amplitude of the clamp motion, and ψ is the phase.

The application Galerkin method i.e. the projection of Equation (15) onto the shape function sin(κ̃0
2),

leads to:

1

2
α2(1− Ω̃2) cos(Ω̃t̃+ ψ) = F̃NL (17)

The nondimensional relative displacement of the bar by the clamp (at z̃ = 1) is presented below:

w̃rel(t̃) = cos(Ω̃t̃)− α cos(Ω̃t̃+ ψ) (18)

Also, the amplitude of this relative displacement is expressed:

αrel =
√
1 + α2 − 2α cos(ψ) (19)

3.1.2. Jenkins Element

When using the Jenkins approach, there is a limit to the relative slip displacement up to which the
frictional dissipation at the bar-clamp interface can be avoided. If the clamp is modelled with a Jenkins
element, the stick limit condition for the amplitude yields:
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k̃T α∗
rel = µF̃N (20)

where α∗
rel is the relative amplitude at the stick limit, and if the actual amplitude of the bar does not

exceed the limit, αrel ≤ α∗
rel the contact force becomes linear because the clamp is in full-stick. Thus,

FNL becomes as presented:

F̃NL(t̃) = k̃T w̃rel(t̃) (21)

Under these conditions, one can solve Equation (17) in the unknown α and ψ by projection onto
sin(Ω̃t̃+ ψ) and cos(Ω̃t̃+ ψ), that reads as shown:

α =
2k̃T

1− Ω̃2 + 2k̃T
(22a)

ψ = 0 (22b)

αrel = |1− α| =

∣∣∣∣∣ 1− Ω̃2

1− Ω̃2 + 2k̃T

∣∣∣∣∣ (22c)

Imposing the condition αrel ≤ α∗
rel, which leads to the expression for α∗

rel :

α∗
rel =

µF̃N

k̃T
(23)

One can derive an expression for the range of Ω̃ ∈ [Ω̃∗pre, Ω̃∗post] where the full-stick regime occurs
and the values of the full-stick region limits. This yields the following equation:

Ω̃∗pre =

√
1− 2 k̃T

µF̃N

k̃T − µF̃N

(24a)

Ω̃∗post =

√
1 + 2 k̃T

µF̃N

k̃T + µF̃N

. (24b)

Similarly, the corresponding vibration amplitudes are obtained as given:

α∗pre = 1− µF̃N

k̃T
(25a)

α∗post = 1 +
µF̃N

k̃T
(25b)

The slip condition is represented with a simplified approach. For the cases where there is slip, it is
assumed that the system is excited with force, which has a maximum of µF̃N . Considering the harmonic
motion of the clamps, it can be stated that the excitation force is harmonic, and its amplitude is µF̃N as
described in Section 4.1.1. Thus, the system becomes linear with a solution for this particular region
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3.1.3. Velocity-Dependent Element

Dissipation in the clamp is always present with the velocity-dependent model, but frictional dissipation
only occurs if the relative slip velocity exceeds the stick limit. In this case, the stick limit condition reads
as shown below:

c̃T Ω̃α∗
rel = µF̃N (26)

where ct is the damping coefficient of the frictional contact.
Because the clamp is in full-stick as Jenkins model if αrel ≤ α∗

rel, the contact force becomes linear.
This is expressed as:

F̃NL(t̃) = c̃T ˙̃wrel(t̃) (27)

Solving Equation (17) in the unknown α and ψ by projection onto sin(Ω̃t̃+ψ) and cos(Ω̃t̃+ψ), that
yields the results which are shown:

α =
2 c̃T Ω̃√

(1− Ω̃2)2 + (2 c̃T Ω̃)2
, (28a)

ψ = arctan

(
1− Ω̃2

2 c̃T Ω̃

)
, (28b)

αrel =
|1− Ω̃2|√

(1− Ω̃2)2 + (2 c̃T Ω̃)2
(28c)

Imposing the condition αrel ≤ α∗
rel, one could derive an expression for the range of Ω̃ ∈ [Ω̃∗pre, Ω̃∗post]

where the full-stick regime occurs and the values of the full-stick region limits. To obtain a simplified
expression, an approximation on the equation for αrel can be done, assuming that the term c̃T Ω̃ ≈ c̃T Ω̄
does not vary with Ω̃. The expressions under this assumption are displayed as follows:

Ω̃∗pre =

√√√√1− 2c̃T Ω̄µF̃N√
(c̃T Ω̄)2 − (µF̃N )2

. (29a)

Ω̃∗post =

√√√√1 +
2c̃T Ω̄µF̃N√

(c̃T Ω̄)2 − (µF̃N )2
. (29b)

Similarly the corresponding vibration amplitudes are formulated:

α∗pre = α∗post =

√√√√1−

(
µF̃N

c̃T Ω̄

)2

(30)

Similar to the case with the Jenkins model, for the regimes other than full-stick, in other words, where
slip occurs, the same assumption is made for harmonic force excitation.

3.2. Torsional Model

The bar model in torsional motion, described in the previous section (Section 2.3), is solved following
the same steps for the axial case (Section 3.2). Considering that the form of the governing equation is
the same as the axial model, the solution procedures are pretty similar. Besides, like the axial model,
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here, the clamps at both ends of the bar are assumed to move with the same frequency but in opposite
directions, obeying the harmonic displacement function θA cos(Ωt) and θB cos(Ωt − π). Here, θA is the
rotation amplitude and Ω is the frequency of the clamp motion. This enables one to model half of the bar
to simplify the model, taking advantage of the stationary middle point of the bar. The motion of these
clamps applies frictional forces on the bar that results in net moments, which force the bar in torsion. As
with the axial model, both Jenkins and velocity-dependent friction models are applied, and the analytical
solutions are obtained.

3.2.1. Nondimensionalisation

Assuming a constant circular cross-section and the imposed displacement onto the clamps that are
initially at z = L to be equal to θA cos(Ωt), the equation of the torsional rotation θ(z̄, t) is formed into
using Equation (11).

ρIp
∂2θ

∂t2
−GIp

∂2θ

∂z2
= δ(z − L)MNL (31)

For normalisation, the nondimensional variables r̃, θ̃, t̃, Ω̃, M̃ , k̃, c̃, κ̃, κ̃0 k̃T and c̃T are defined as:

r0 = rθA , J = ρIp ; κ = ω
√
ρ/G ; κ0 = ω0

√
ρ/G

M0 = J ω2
0 L θA ; k0 = J ω2

0 L ; c0 = J ω0 L ; r̃ = r/r0 ; θ̃ = θ/θA

z̃ = z/L ; t̃ = t ω0 ; Ω̃ = Ω/ω0 ; M̃ = M/M0 ; k̃ = k/k0

c̃ = c/c0 ; κ̃ = κL; κ̃0 = κ0L ; k̃T = kT /k0 ; c̃T = cT /c0

(32)

where the system parameters are the mass moment of inertia J , the cross-sectional polar area moment
of inertia Ip and the rest of the parameters are defined as explained in the previous section where the
axial case is solved.

Multiplying Equation (31) by the factor 1/(Jω2
0θA) and displaying the normalised variables, the fol-

lowing expression is obtained:

¨̃
θ − 1

κ̃20
θ̃
′′
= δ(z̃ − 1) M̃NL (33)

where
¨̃
θ = ∂2θ̃

∂t̃2
, θ̃

′′
= ∂2θ̃

∂z̃2
, and the Dirac delta transforms from δ(z − L) to δ(z̃ − 1) by generating a

factor L.
The clamps move following a harmonic rotation function with a range of frequency around the first

torsional natural frequency of the bar. In the ansatz shown in the equation below, the function θ̃ stands
for the nondimensional rotation and α for the nondimensional amplitude of the bar motion over the
amplitude of the clamp motion.

θ̃(z̃, t̃) = α sin(κz̃) cos(Ω̃t̃+ ψ) (34)

Applying the Galerkin method i.e. the projection of Equation (33) onto the shape function sin(πz̃2 ),
leads to Equation (35)

1

2
α2(1− Ω̃2) cos(Ω̃t̃+ ψ) = M̃NL (35)

The nondimensional relative rotation at z̃ = 1 and its amplitude are given in the equations below:

θ̃rel(t̃) = cos(Ω̃t)− α cos(Ω̃t̃+ ψ) (36)

αrel =
√

1 + α2 − 2α cos(ψ) (37)

11



3.2.2. Jenkins Element

Similar to the axial case, the stick limit condition is expressed as:

k̃T α∗
rel = µF̃N r̃ (38)

where α∗
rel is the nondimensional relative rotation amplitude at the stick limit. In the case where the

amplitude remains below the limit, αrel ≤ α∗
rel the contact force and consecutively, the moment becomes

linear because the clamp stays in the full-stick regime.
Hence, FNL and MNL become:

F̃NL(t̃) =
k̃T θ̃rel(t̃)

r̃
(39a)

M̃NL(t̃) = k̃T θ̃rel(t̃) (39b)

It then becomes possible to solve Equation (35) in the unknown α and ψ using the same philosophy
as the axial case. The resulting expressions are shown:

α =
2k̃T

1− Ω̃2 + 2k̃T
(40a)

ψ = 0 (40b)

αrel = |1− α| =

∣∣∣∣∣ 1− Ω̃2

1− Ω̃2 + 2k̃T

∣∣∣∣∣ (40c)

dFor the condition αrel ≤ α∗
rel, the expressions for the range of the full-stick regime and the limit

values of the full-stick region Ω̃ ∈ [Ω̃∗pre, Ω̃∗post] are found as well as the amplitudes. These are given in
the following equations:

Ω̃∗pre =

√
1− 2 k̃T

µF̃N r̃

k̃T − µF̃N r̃
(41a)

Ω̃∗post =

√
1 + 2 k̃T

µF̃N r̃

k̃T + µF̃N r̃
. (41b)

α∗pre = 1− µF̃N r̃

k̃T
(42a)

α∗post = 1 +
µF̃N r̃

k̃T
(42b)

The final possible condition is when clamps fail to stick to the bar surface and slide. The same
assumption is made as in Section 3.1.2. This suggests that the bar is excited in the torsional direction
with a harmonic moment and an amplitude of µF̃N r̃ since the clamps rotate following a harmonic function.

12



3.2.3. Velocity-Dependent Element

Developing the model with the velocity-dependent formulation leads to the stick limit condition shown
as:

c̃T Ω̃α∗
rel = µF̃N r̃ (43)

where cT is the damping coefficient of the frictional contact.
αrel ≤ α∗

rel makes the contact force linear because the clamp sticks fully similar to the Jenkins model.
This is given as:

F̃NL(t̃) = c̃T
˙̃
θrel(t̃)r̃ (44a)

M̃NL(t̃) = c̃T
˙̃
θrel(t̃) (44b)

To solve Equation (35) for the unknown α and ψ by projection onto sin(Ω̃t̃+ψ) and cos(Ω̃t̃+ψ), that
lead to the results presented as follows:

α =
2 c̃T Ω̃√

(1− Ω̃2)2 + (2 c̃T Ω̃)2
, (45a)

ψ = arctan

(
1− Ω̃2

2 c̃T Ω̃

)
, (45b)

αrel =
|1− Ω̃2|√

(1− Ω̃2)2 + (2 c̃T Ω̃)2
(45c)

Considering the condition αrel ≤ α∗
rel, the expressions for the range of the full-stick regime and the

values of the full-stick region limits Ω̃ ∈ [Ω̃∗pre, Ω̃∗post] can be derived. For a simplified expression, one
can assume that the term c̃T Ω̃ ≈ c̃T Ω̄ does not vary with Ω̃. The expressions under these assumptions
read:

Ω̃∗pre =

√√√√1− 2c̃T Ω̄µF̃N r̃√
(c̃T Ω̄)2 − (µF̃N r̃)2

. (46a)

Ω̃∗post =

√√√√1 +
2c̃T Ω̄µF̃N r̃√

(c̃T Ω̄)2 − (µF̃N r̃)2
. (46b)

The corresponding vibration amplitudes, shown below, are derived similarly.

α∗pre = α∗post =

√√√√1−

(
µF̃N r̃

c̃T Ω̄

)2

(47)

To solve the sliding condition, the same approach is used with the previous models. Taking advantage
of the harmonic motion of the clamps, a harmonic moment with the amplitude of µF̃N is chosen to stand
for the excitation moment.
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3.3. Selection of Solutions

As described previously, the analytical solutions are developed for the models considering full-stick
and slip conditions. As a result, there are two separate solutions. The combinations of these two represent
the solution for the nonlinear bar-clamp system. The question is, which regime solution is valid at the
particular point of the domain. The valid expression for a particular excitation frequency is the one that
requires less frictional contact force, in other words, the one that yields the lower amplitude.

Figure 5 shows some schematic curves for the required frictional force FR, which reaches its minimum
at the resonance frequency, and the maximum contact friction force FFmax against frequency assuming
FFmax = µFN . In Figure 5a, the first case is displayed, where these curves do not intersect, which means
the necessary frictional contact force is always greater than the maximum contact friction force. This will
always result in slip and consequently frictional dissipation along with the frequency interval of interest.
The second case is visualised in Figure 5b where the required frictional contact forces are relatively lower
so that there is only one intersection. In this case, the full-stick regime governs the system up until the
intersection frequency and the slip regime takes over for the frequencies greater than that. Finally, as
shown in Figure 5c, there can be two intersections of the presented curves. This leads to a domain divided
into three regions, namely a full-stick regime between the intersection points and slip before the first and
beyond the second point of intersection.

(a) One regime, one region through the en-
tire frequency interval: Full-slip domina-
tion.

(b) Two regimes, two regions: Full-stick,
full-slip.

(c) Two regimes, three regions: Full-slip,
full-stick, full-slip.

Figure 5: Existence of regimes and regions based on the contact forces.

4. Numerical Modelling

The developed analytical solutions in the last section are compared to the numerical one using AFTHB
[57, 61]. Both Jenkins and velocity-dependent friction models are used to simulate the nonlinear dynamic
response of axial and torsional vibration bars. First, the definitions of the nonlinear friction forces are
presented. Then, the numerical approach is briefly explained.

4.1. Nonlinear Friction Force Definition and Modelling

The friction models can be either defined in terms of the relative displacement between the two points
in contact or the relative velocity. In both cases, the limit value that the nonlinear force assumes for
large relative motion coincides with the tangential friction force µFN . At very small values of the relative
motion, the contact is instead modelled as a force in linear relation with the chosen variable (either relative
displacement or relative velocity).

Such force is the contact force exerted by the clamp on the bar when the two components are considered
to be in stuck conditions.

In both cases, FR(wrel, ẇrel) is defined as the frictional contact force, the expression of the nonlinear
friction force is written as:

FNL(wrel, ẇrel) =


− µFN if FR(wrel, ẇrel) < −µFN

+µFN if FR(wrel, ẇrel) > +µFN

FR(wrel, ẇrel) else

(48)
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4.1.1. Jenkins Model

If the frictional contact force FR is modelled with an elastic behaviour (displacement formulation,
which is similar to a spring formulation), the resulting nonlinear element will coincide with a Jenkins
element. Hence, the frictional contact force is given by:

FR = kT (wrel −∆wslip) (49)

where kT is the tangential contact stiffness and ∆wslip is the cumulative relative displacement accu-
mulated during the slip phase. Numerically the value of ∆wslip is obtained through a time discretisation
of the period, solving for the variables and updating the value of ∆wslip at each time step of the slip phase.
An analytical expression cannot be provided for the general case, but it can be found if one assumes that
the relative displacement is a purely harmonic function which is expressed as:

wrel(t) = a cos(Ωt). (50)

If the value of kT a exceeds the friction limit µFN a stick-slip cycle is observed. Otherwise, the value
of ∆wslip assumes the simple expression shown in the following equation:

∆wslip = −sign(ẇrel)(a−
µFN

kT
) (51)

Being ẇrel = −aΩsin(Ωt), for the first half period, the sign of the velocity will be negative, and for
the second half, positive. The frictional contact force is written as:

FR =

{
kT a cos(Ωt)− (kT a− µFN ) if t ∈ [0, T/2]

kT a cos(Ωt) + (kT a− µFN ) if t ∈ [T/2, T ]
. (52)

where T indicates a vibration period.
Obviously, in the case of kT a < µFN , a full-stick cycle will occur. This means no dissipation is

observed, and the frictional force is a purely elastic reaction.
The case of a generic stick-slip cycle is reported in Figure 6. One can notice that the four different

conditions for the friction force are depicted with different colours, and the hysteresis loop generated is
shown in the (b) plot. The area enclosed in the hysteresis loop, representing the dissipated energy, is

equal to 2µFN (a− µFN

kT
): for very small values of the friction limit, the cycle will mostly consist of slip

phases and the energy dissipated will be small, and for a ≤ µFN

kT
the cycle will reduce to a pure stick

cycle with no dissipation.
Another notable observation is that for the generic case reported in Figure 6 the equivalent stiffness

introduced in the system by the friction element is lower than kT due to the presence of the slip phases.
In the extreme case of a pure stick cycle, this stiffness will equal kT , whereas in the extreme case of an
almost full-slip cycle, it will tend to be zero.
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(a) Force against time.

(b) Force against relative displacement.

Figure 6: Simplified Jenkins element under the single harmonic assumption.

4.1.2. Velocity-Dependent Model

If the frictional contact force is modelled with a viscous behaviour (velocity formulation, which is
similar to a viscous damper formulation), the frictional force will simply be as follows:

FR(ẇrel) = cT ẇrel (53)

where cT is the viscous damping constant. Unlike the Jenkins model, this model is always dissipative,
even in the case of a pure stick cycle. Under the single harmonic assumption, the generic stick-slip cycle
assumes a simplified expression for the force. In Figure 7, the nonlinear friction force against time and
the hysteresis loop are depicted.
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(a) Force against time

(b) Force against relative displacement.

Figure 7: Simplified velocity-dependent element under the single harmonic assumption.

If the value of cTΩa is lower than µFN , the element will reduce to a dashpot of value cT . If cTΩa
exceeds µFN , a stick-slip cycle will occur. From the hysteresis loop, it must be noticed that this friction
element does not introduce any stiffness into the system. Moreover, in the generic case of a stick-slip
cycle, the value of ∆wslip can also be derived as shown:

∆wslip =

√
a2 −

(
µFN

cTΩ

)2

(54)

4.2. Modelling Methodology

A one-dimensional FE bar element is used to model the axial and torsional motion of the rod with
frictional clamps. In this FE model, half of the rod with symmetric boundary conditions and Clamp B
is used to represent the full model. The clamp is assumed to be only applied on the last node. A base
excitation is used to excite the clamp, and the displacement of the clamp, uB(t), is prescribed with a
certain frequency Ω.

One-dimensional Jenkins and velocity-dependent elements with constant normal load are used to
compute the friction force [58]. FN is the normal load; kT is the tangential contact stiffness; cT is the
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viscous damping coefficient of the contact; µ is the friction coefficient. There are two contact statuses for
these two elements, which are sticking and sliding. The description of these two elements can be referred
to Section 4.1.

The equation of motion for the FE model with friction forces is given in Equation (55):

M Ü(t) + C U̇(t) + K U(t) + FF = 0 (55)

where M, C and K are the mass, viscous damping and stiffness matrices respectively. U(t) is the
generalized displacement vector of the rod; uB(t) is the prescribed displacement of the left frictional
clamp; FF is the friction force. The classic AFTHB procedure is used to solve the Equation 55 in the
frequency domain [62]. With the HBM, the numerical solutions is discretised into Fourier series truncated
to a certain order Nh, and shown as in the equation below:

U (t) =
Nh∑
h=0

Real
{
eihωt •

(
Uh,c − Uh,si

)}
(56)

Ũ =
[
U0,c, U1,c − U1,si, Uh,c − Uh,si

]T
(57)

Then, the equation of motion, which is originally formulated in the time domain (Equation (55)), can
be rewritten in the frequency domain to yield the following expression.

A Ũ + F̃F (ũ71 − ũB) = 0 (58)

Since the contact friction model is defined in the time domain as shown in Section 4.1, AFTHB
procedure is used to compute the contact friction force in the time domain FF and transfer that into
frequency domain F̃F using the inverse discrete Fourier transformation (IFFT).

To obtain the dynamic response of the bar-clamp system for a range of excitation frequencies Ω,
the classical predictor-corrector continuation technique is used to track the evolution of the results with
respect to a certain chasing parameter. In this work, excitation frequency Ω is the chasing parameter. A
secant predictor and pseudo-arc-length corrector are used [63].

5. Numerical Examples

5.1. Description of the Test Cases

For the axial vibration study, the dimension of the rod is given as a length of 70 mm, width of 14 mm
and thickness of 4 mm. The material property of the rod is a density of 1400 kg/m3, Young’s modulus
of 3.5 GPa and Poisson’s ratio of 0.38. A one-dimensional finite element (FE) bar element is used. There
are 71 nodes in total, with only one degree of freedom for each node to model the axial motion of the rod.

For the torsional vibration bar study, steel pipes with shrink fit is used to represent the case. The
bar has a circular cross-section with a diameter of 7 mm, and the free length of the bar is 250 mm. The
friction coefficient between the clamp and the bar is taken as 0.45. The material of the bar is taken as
typical standard steel, which has the modulus of elasticity of 210 GPa, Poisson’s ratio of 0.28 and density
of 7800 kg/m3. In terms of the numerical simulation, the only difference between the resultant loads of
interest are the torsion moments, which also root from the contact friction as explained in Section 2.3.

5.2. Results:Model in Axial Motion

The analytical and numerical results presented within this study are nondimensionalised (frequency:
Ω̃, amplitude: α).
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5.2.1. Jenkins Element

The two separate solutions of the axially vibrating bar with Jenkins friction approach for full-stick and
full-slip regimes are shown in a representative plot in Figure 8 which corresponds to the case displayed
in Figure 5c. Re-emphasising that the valid solutions are ones that result in lower amplitudes for the
same excitation frequency. The most significant feature of this representative plot in Figure 8 is that the
full-stick regime occurs around the resonance where the minima of the required frictional contact forces
are located. The frequency interval, where full-stick is prevalent, can be expanded or shrunk depending
on the maximum friction force or the amplitude of the clamp motion.

Figure 8: A sketch of the analytical solutions for bar in axial motion with Jenkins model.

Figure 9 shows the analytical and numerical results together for the axially excited rod with the
Jenkins friction approach, which assumes k̃T = 2.5. Both analytical and numerical results display the
same behaviour with some considerable level of accuracy. The analytical model predicts lower vibration
amplitudes compared to the numerical model in the pre-resonance slip region. In the post-resonance slip
region, however, analytical values are slightly greater than the results of the numerical analysis. This is
mainly caused by the representation of the friction forces by a simpler harmonic function which affects the
dissipation characteristics leading to these differences in the predicted amplitudes. The gap between these
two models is closed towards the resonance and becomes almost negligible in the stick regime. The only
difference is the numerical model predicts a small peak just before going back to sliding. The analytical
model does not show that curvature before the peak, but both models predict the maximum amplitude
with good precision. In the end, it can be stated that the results of both analytical and numerical models
show good agreement.
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Figure 9: Comparison of analytical and numerical results for the axial case with Jenkins model.

Referring to the same figure (Figure 9), under constant normal load, increasing the clamp motion
amplitude, which is expressed as WA/L ratio, shrinks the full-stick regime dominance within the selected
frequency interval, in other words, the slip region expands eventually causing more friction damping. The
maximum amplitude is located towards the end of the post-resonance full-stick regime exceeding the clamp
motion amplitude. This can be explained by the presence of the contact stiffness, which also controls the
slope of the stick regime. The total stiffness of the system does not only consist of the stiffness of the bar,
and the system is not directly excited with a simple harmonic force. The moving clamp interacts with
the bar over the contact, which is described with a Jenkins element for this case. Hence, the amplitude
of the bar may go slightly beyond the amplitude of the clamp motion. The small peak at the end of the
stick region also occurs for the same reason.
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(a) k̃T = 2.5

(b) k̃T = 25.3

Figure 10: Expansion of the stick limit boundaries with µF̃N . Limit amplitude against limit frequency for different values of
k̃T under the constat clamp motion amplitude of 0.0001.

Figure 10 displays the limit frequency and amplitudes values of the full-stick region depending on the
maximum friction force, µF̃N with various contact stiffness coefficients k̃T under the same clamp motion
amplitude. The first thing to note is that the stick region expands with increasing maximum friction
force, µF̃N . This expansion is greater in pre-resonance frequencies and less in the post-resonance region.
For lower k̃T values, the curve has a greater slope and thus, the limit amplitudes pass beyond the value
1, which is the amplitude of the clamp motion. Meanwhile, increasing the tangential contact stiffness
reduces the slope and leads to a flatter, full-stick region. This can be explained by the contact stiffness
values considered to be greater than the bar’s axial stiffness. Rising k̃T widens the gap between these
stiffnesses and hinders the dynamic interaction of the contact. Thus, the overall behaviour of the system
becomes more bar dominated. The curves become flatter, and the interval of amplitude values, that
approach closer to 1, is extended.

The stick limits shown in Figure 11 plotted based on Equation (24), shows the minimum necessary
limit frictional force, µF̃N , under constant clamp motion amplitude. Based on this visualised data, the
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first thing to notice is that the minimum necessary limit friction force becomes zero at the resonance
frequency. This is an expected result for a system with no damping source which is always present, in
other words, independent of stick and slip regimes of the contact friction. The only source of damping
of this system is the frictional contact, which behaves elastically in a full-stick regime. Considering
that this plot marks the border of a damped (full-slip) and an undamped (full-stick) regime, a purely
conservative elastic dynamic behaviour can be understood. Moreover, in the static case where Ω̃ = 0,
the minimum necessary limit frictional force has a finite value, and it decreases towards the resonance
frequency, reaching zero at the resonance as mentioned earlier. From the resonant frequency towards
higher frequencies, the least necessary limit frictional force increases. Besides, in the pre-resonant region,
the least necessary limit frictional force increases if the contact stiffness k̃t is increased. On the other
hand, in the post-resonant frequencies, the minimum necessary friction force this trend is reversed.

Figure 11: The least necessary µF̃N for full-stick regime in axial Jenkins model.

5.2.2. Velocity-Dependent Element

The same case of the axially vibrating bar under the excitation of moving frictional clamps is modelled
with the velocity-dependent model.
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Figure 12: A sketch of the analytical solutions for bar in axial motion with velocity-dependent model.

Again, the solution procedure divides the motion into two regimes depending on the existence of slip
at the contact interface between the bar and the clamp, like the model with Jenkins. The only difference
is the calculation method of the friction force. A representative plot including the two contact conditions,
stick and slip is presented in Figure 12. A noticeable aspect in this plot is that there is a tiny region for
very low frequencies (around Ω̃ = 0) where clamps stick to the bar. Following this small stick region is
a slip region with increasing frequency until the main stick region is located around the resonance. The
amplitudes are almost fixed to the value of 1 in this second stick region. Therefore, it appears as a flat
top in the plot. The second stick region is succeeded by another region dominated by the slip regime,
which is similar to the case with the Jenkins model. Altogether, two regimes appear in two regions each.
Thus, the solution consists of four regions.

To compare the results of the numerical and analytical approaches, Figure 13 is presented. The calcu-
lations to generate this plot c̃T is taken as 7.7. Overall, the results of both methods are in good agreement.
The amplitudes that the analytical model predict are slightly smaller than the numerical predictions in
the pre-resonance slip region. Later in the stick region around the resonance, the results agree almost
perfectly. The amplitudes become 1 in the stick regime and remain constant throughout the region. In
the post-resonance slip regime, the results start out very similar. However, with increasing excitation
frequency, the results of the numerical model become smaller than their analytical correspondents. Since
these trends are very similar to the Jenkins model, the reasons are expected to be the same, namely the
error in damping caused by the representation of the contact forces in the slip regime.
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Figure 13: Comparison of analytical and numerical results for the axial case with velocity-dependent model.

Apart from these, Figure 13 points out that increasing clamp motion amplitude again shrinks the full-
stick region. This is because increasing the clamp motion amplitude leads to greater required frictional
contact forces. The friction forces attain the maximum value in larger intervals of frequency.

To understand the effect of the maximum frictional force on the limits of the stick regime, Figure 14
shows various c̃T values. For c̃T = 1.3 (Figure 14a), an amplitude peak, which reaches its maximum value
of α = 1, which is visible at the resonance frequency. The rest of the amplitude values are slightly below
1 for pre-and post-resonant frequencies. The curve in the pre-resonant region rise up to 1 with a smaller
gradient compared to the absolute value of the gradient of the falling amplitudes in the post-resonant
region. Besides, the plots also show that greater c̃T values make the amplitude curve flatter equating all
the values practically to 1.
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(a) c̃T = 1.3

(b) c̃T = 7.7

Figure 14: Enlargement of the stick limit boundaries with µF̃N . Limit amplitude against limit frequency for different values
of c̃T under the constat clamp motion amplitude of 0.0001.

In Figure 15 the least necessary frictional force is visualised using Equation (29) for this velocity-
dependent model. The characteristics of the plots are pretty much the same, which could be expected.
This figure again points out the limits of the conservative and dissipative regimes that are purely dependent
on the status of the frictional contact. The condition that ends one regime and starts the other is precisely
the same as the Jenkins model. The difference in this model is the approach which the dissipative regime
is formulated. The curves are shaped dominantly by the conservative elastic regime and the condition
that separates them from the full-slip regime.
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Figure 15: The least necessary µF̃N for full-stick regime in the velocity-dependent model.

5.3. Results:Model in Torsional Motion

5.3.1. Jenkins Element

Like the axial model, for the torsional bar model subjected to friction employing the Jenkins approach,
the analytical solution is performed by decomposing the dynamics of the system in two regimes based on
the contact conditions. The solutions of the stick and slip regimes are schematically shown in Figure 16.
Following the same methodology, the valid solution is the one that provides the lower amplitude.

Figure 16: A sketch of the analytical solutions for bar in torsional motion with Jenkins model.
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Figure 17: Comparison of analytical and numerical results for the torsional case with Jenkins model.

The results of the bar model with a circular cross-section fitted into a pipe, which is described in detail
earlier, are visualised in Figure 17 while keeping k̃T = 0.9 slightly softer than the axial case. The clamp
motion amplitudes are defined over rotation per unit length, γ this time. All the comments made for the
axial model are valid for this torsional model as well, such as the expansion of the stick region with falling
γ values and the differences between the analytical and numerical models. This is the consequence of the
same characteristics of the governing equations. However, in the curve that is excited with the lowest
γ, one can quickly notice that the stick region is dominant from the start of the frequency interval of
interest (Ω̃ = 0.6) until the beginning of the post-resonance slip regime which is around Ω̃ = 1.07. This
is an example of the case described in Figure 5b. Here, the selected contact stiffness values are smaller
than the ones in the axial model and closer to the bar stiffness. Therefore, the amplitude values tend to
go further beyond 1, which is caused by more interaction of the contact and the bar. The curve plotted
for the smallest clamp motion amplitude almost reaches 2.
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(a) k̃T = 0.9

(b) k̃T = 9.2

Figure 18: Growth of the stick limit boundaries with µF̃N . Limit amplitude against limit frequency for different values of
k̃T under the constat clamp motion amplitude of 0.001.

Figure 18 facilitates exploring the influence of the contact stiffness on the growth of the stick region
for the torsional bar with the Jenkins friction approach. Again, the stick region expands easier in the
pre-resonant region towards smaller frequencies compared to the growth in the post-resonant frequencies.
Considering that the contact is softer than the axial model, the curves have greater gradients and con-
sequently, rise to greater amplitude values. Stiffening the contact flattens the amplitude curve just as in
the axial model.

Like the axial case with the Jenkins element, the minimum necessary frictional moment for a full-stick
regime is displayed in Figure 19 using Equation (41). Knowing that the system characteristics of the
torsional model with the Jenkins element are precisely the same as the axial model with the Jenkins
element, one can explain this figure using the same perspective.
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Figure 19: The least necessary µF̃N r̃ for full-stick regime in torsional Jenkins model.

5.3.2. Velocity-Dependent Element

The results of the final analytical model built within the scope of this study are acquired by merging
the two separate solutions as done in the previous models. These separate solutions, which belong to the
regimes of stick and slip contact conditions, are sketched in Figure 20. This sketch exhibits four regions of
stick and slip identical to the axial model with a velocity-dependent friction approach. This is a natural
consequence of closely related characteristics of the governing equations.

Figure 20: A sketch of the analytical solutions for bar in torsional motion with velocity-dependent model.
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Figure 21: Comparison of analytical and numerical results for the torsional case with velocity-dependent model.

The results produced utilising the analytical and numerical models for a range of various clamp
displacement amplitudes are presented in Figure 21. Here, c̃T is kept constant and selected as 0.1, which
is very small compared to the examples of the axial case. Throughout the whole interval of frequencies of
interest, both numerical and analytical solutions show very similar behaviours. However, the analytical
solution predicts a motion with slightly less amplitude except for the frequency of resonance, where both
are equal to 1. The numerical approach suggests that the stick regime is almost a flat-top region around
the resonance, whereas the analytical method yields a curve with a greater curvature which depends on
c̃T . The margin of error in both stick and slip regimes (in stick more dramatically) drops as the clamp
motion amplitude increases. Comparing these results to the axial case, another factor that affects the
gap between the numerical and analytical approaches is the c̃T , the damping coefficient of the contact,
which controls the curvature of the plot in the stick regime. These models are in better agreement in
the full-stick regimes for greater values of parameter c̃T . As the c̃T rises, the amplitude response of the
stick regime becomes flatter and the values closer to the boundaries of the slip regime climb closer to
1. This behaviour can be seen in Figure 22 (22a and 22b), which visualise the effects of µF̃N and c̃T
on the boundaries of the stick and slip regions. Figure 22 also shows that the expansion of the stick
region is easier towards smaller frequencies compared to growth in the positive direction along the axis
of frequency.
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(a) c̃T = 0.1

(b) c̃T = 0.8

Figure 22: Enlargement of the stick limit boundaries with µF̃N . Limit amplitude against limit frequency for different values
of c̃T under the constat clamp motion amplitude of 0.001.

Finally, Figure 23 displays the relationship with the minimum required frictional moment for a full-
stick regime based on Equation (41). Comparing this in every aspect, one can conclude that the plots are
very similar to the ones presented in Section 5.2.2 and therefore, the interpretation must be made using
the same approach.
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Figure 23: The least necessary µF̃N r̃ for full-stick regime in torsional velocity-dependent model.

6. Conclusion

This study presents a new analytical solution to predict the steady-state forced vibration response of
bars with frictional clamps under the axial and torsional motion. The principle of the new solution consists
in using the Dirac delta function to describe the modeling of nonlinear clamps into the concentrated
nonlinear loads due to the friction. In this study, the nonlinear loads caused by the friction are modelled
using two different models, namely, Jenkins and velocity-dependent models to describe the full-stick and
full-slip regime. The equations of motion including the friction models are then nondimensionalised and
solved by using the Galerkin method to obtain the response of each regime separately. The final solution
for the dynamical response of the bar-clamp system can be then found by combining the solutions of
both regimes. The performance of the proposed analytical solution was demonstrated by two numerical
examples. To validate the proposed analytical solution, a well known numerical method based on harmonic
balance methods that requires fewer simplifications/assumptions is performed as the reference. The results
of the numerical and analytical models are compared with each other and are overall found to be in good
agreement.

The results of both Jenkins and velocity-dependent models show that the stick regime governs the
behaviour around the resonance since the necessary excitation forces reach their minima at the resonance.
The interval where stick regime is dominant is controlled by the maximum friction forces. The greater
the maximum friction forces are, the larger the stick regime interval. Likewise, increasing the prescribed
clamp motion amplitude shrinks the stick region. Here, the maximum friction forces are constant, but
the required frictional forces climb. The displacement amplitude of bars with the Jenkins friction model
exceeds the imposed clamp motion amplitude. The main reason is the interaction of the contact stiffness
with the bar. The interaction becomes more significant if the contact stiffness is closer to the bar stiffness,
and thus, the overshoot of the amplitude becomes greater. For stiffer contacts, the overshoot becomes
negligible, and the plot of the stick region becomes a flat line fixed at the amplitude value of 1. The bar-
clamp system built by using the velocity-dependent model generally shows similar behaviour. However,
the peak amplitude value never exceeds unity in this model. The stick regime may be found at two
different locations, at very small frequencies, as well as around the resonance. The stick regime around
the resonant frequency looks almost like a flat top for a larger contact damping coefficient and has a
considerably significant curvature for the lower contact damping.

In summary, the following conclusions can be drawn from this study:
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� The study introduces a novel analytical solution for predicting the dynamic behaviour of bars with
frictional clamps, incorporating the Dirac delta function to model concentrated nonlinear loads due
to friction.

� It employs both Jenkins and velocity-dependent friction models to comprehensively understand the
full spectrum of stick-slip behaviour in bar-clamp systems.

� The proposed analytical solution is validated through a comparative analysis with a standardised
numerical method based on harmonic balance, demonstrating its accuracy and reliability.

� The research provides significant understanding of the effects of friction forces and contact stiffness
on the vibrational response of the system, that can help the design and optimisation of mechanical
systems.
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